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Abstract—The use of OVSF codes in WCDMA systems has offered opportunities to provide variable data rates to flexibly support

applications with different bandwidth requirements. Two important issues in such an environment are the code placement problem and

code replacement problem. The former may have significant impact on code utilization and, thus, code blocking probability, while the

latter may affect the code reassignment cost if dynamic code assignment is to be conducted. The general objective is to make the

OVSF code tree as compact as possible so as to support more new calls by incurring less blocking probability and less reassignment

costs. Earlier studies about these two problems either do not consider the structure of the OVSF code tree or cannot utilize the OVSF

codes efficiently. To reduce the call blocking probability and the code reassignment cost, we propose two simple yet efficient strategies

that can be adopted by both code placement and code replacement: leftmost and crowded-first. Numerical analyses on call blocking

probability and bandwidth utilization of OVSF code trees when code reassignment is supported are provided. Our simulation results

show that the crowded-first strategy can significantly reduce, for example, the code blocking probability by 77 percent and the number

of reassignments by 81 percent, as opposed to the random strategy when the system is 80 percent fully loaded and the max SF = 256.

Index Terms—Mobile computing, OVSF, personal communication services, WCDMA, wireless communication, 3G.
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1 INTRODUCTION

MOBILE communications have come into our daily life
recently. In the second-generation (2G) CDMA

systems, such as IS-95, users are each assigned a single
Orthogonal Constant Spreading Factor (OCSF) [20], [21].
Services provided in existing 2G systems are typically
limited to voice, facsimile, and low-bit-rate data. To
support higher-rate services, multiple OCSF codes may be
used [11], [15], [17].

Beyond these 2G services, higher-rate services, such as file

transfer and QoS-guaranteed multimedia applications, are

expected to be supported by the third-generation (3G)

systems. To satisfy different requirements, the system has

to provide variable data rates. In the 3G wireless standards

UMTS/IMT-2000 [1], [8], [12], [14], WCDMA has been

selected as the technology for use in the UMTS terrestrial

radio access (UTRA) FDD operation by European Telecom-

munication Standards Institute (ETSI). WCDMA can flexibly

support mixed and variable-rate services. Such flexibility can

be achieved by the use of Orthogonal Variable Spreading

Factor (OVSF) codes as the channelization codes [10], [12].

OVSF has the ability to support higher and variable data rates

with a single code using one transceiver, making its hardware

less complex than the multicode OCSF [9].

In this paper, we focus on the environment where one
single OVSF code is available for each call (i.e., the multi-
OVSF-code case such as that in [7], [19] is not considered).
OVSF codes can be represented as a code tree [3], [16]. The
data rates provided are always a power of two with respect
to the lowest-rate codes. Two issues that are critical to the
utilization of an OVSF code tree are the code placement
problem and code replacement problem. The former addresses
how to place a new call in the code tree to avoid the tree
becoming too fragmented; it may have significant impact on
the code utilization of the system. This is very similar to the
traditional memory management problem in Operating
System design [2]. The latter addresses how to relocate
codes when a new call arrives finding no proper place to
accommodate it. This can reduce code blocking, but will
incur code reassignment costs.

This paper addresses both code placement and replace-
ment issues in a WCDMA system where OVSF code trees
are used for downlink transmission from base stations to
mobile terminals. The general objective is to make the OVSF
code tree as compact as possible so as to support more new
calls by incurring less blocking probability and less
reassignment costs. Three strategies which can be adopted
by both code placement and code replacement are
proposed: random, leftmost, and crowded-first. The random
strategy is used here for comparison purposes. The leftmost
strategy tries to place codes starting from the leftmost
available position, while the crowded-first strategy tries to
allocate a code in a subtree that has the most occupied
codes. Our code replacement solution is built on top of the
DCA algorithm in [18]. Numerical analyses on call blocking
probability and bandwidth utilization of OVSF code trees
when code reassignment is supported are provided. Our
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simulation results have demonstrated that both the leftmost
and the crowded-first strategies perform pretty well
compared to the naive random strategy. Earlier studies
about these two problems either do not consider the
structure of the OVSF code tree or cannot utilize the code
tree efficiently. A more detailed comparison to existing
works [4], [6], [7], [13], [18], [19], [22] is in Section 2.

Section 2 defines the problems to be solved and provides
some reviews. Section 3 presents our code placement and
replacement strategies. Some performance analysis results
are in Section 4. Simulation results are in Section 5.
Conclusions are drawn in Section 6.

2 PROBLEM STATEMENT AND LITERATURE REVIEW

In WCDMA, two operations are applied to user data. The
first one is channelization, which transforms every data bit
into a code sequence. The length of the code sequence per
data bit is called the spreading factor (SF), which is typically a
power of two [16]. The second operation is scrambling,
where it applies a scrambling code to the spread signal.
Scrambling codes are used to separate the signals from
different sources, while channelization codes are used to
separate transmissions from a single source.

The Orthogonal Variable Spreading Factor (OVSF) codes are
used as the channelization codes in UTRA. The possible
OVSF codes can be represented by a code tree, as shown in
Fig. 1. Each OVSF code can be denoted as CSF;k, where SF is
the spreading factor and k is the branch number,
1 � k � SF. The number of codes at each level is equal to
the value of SF. All codes in the same layer are orthogonal,
while codes in different layers are orthogonal if they do not
have an ancestor-descendant relationship. Leaf codes have
the minimum data rate, which is denoted by 1R. The data
rate is doubled whenever we go one level up the tree. For
example, in Fig. 1, C4;1 has rate 2R, and C2;1 has rate 4R. The
“transmission unit” that can be assigned to a user is codes.
Two users should not be given two codes that are not
orthogonal.

Now, we define the problems to be solved in this paper.
When a new call arrives requesting for a code of rate kR,
where k is a power of two, we have to allocate a free code of
rate kR for it. The Code Placement Problem is to address
the allocation policy when multiple such free codes exist in
the code tree. When no such free code exists but the
remaining capacity of the code tree is sufficient (i.e.,
summation of data rates of all free codes is � kR), two
possibilities occur. The first one is to reject this call, for
which we call code blocking. The second is to relocate some
codes in the code tree to “squeeze” a free space for the new

call. This is called the Code Replacement Problem. These
two problems are very similar to the traditional memory
management problems in the Operation System.

Consider the scenario in Fig. 1. If a new call x requesting
rate 1R arrives, any free code at the bottom of the code tree
can be assigned to it. However, a bad placement may cause
deficiency in the future. Suppose that a placement strategy
chooses code C8;8 for x. Later on, when another call x0

arrives requesting a rate 2R, it will be rejected for no space
available. On the contrary, if the placement strategy chooses
C8;2 or C8;6 for x, then x0 can be placed in C4;4. When a
placement strategy cannot find a proper free code, one
possibility is to perform code reassignment. Take the
scenario in Fig. 1 again. When a new call arrives requesting
a rate 4R, we can either vacate the subtree C2;1 or C2;2. The
former will cause two codes being relocated, while the latter
only one code being relocated. So, the latter could be a
better choice. Code replacement involves both determining
which subtree is to be vacated and where to place those
codes being relocated.

2.1 Related Works

The work in [13] is targeted at the integration of voice and
data calls in WCDMA systems. It recommends that voice
calls (with minimum bit rate 1R) always be placed to the
left-hand side of the code tree. Every time when a voice call
terminates, the rightmost voice call is reassigned to the code
just released. The goal is to keep larger free space at the
right-hand side of the code tree. This strategy may incur a
large number of unnecessary code reassignments. The
strategy in [6] tries to place smaller calls on the left-hand
side of the code tree and larger calls of the right-hand side.
Whenever a call leaves, the same reassignment strategy is
applied to readjust the code tree. As a result, the same
problem of large unnecessary reassignments may exist. The
time complexities of the above two strategies are both O(SF)
in the worst case. The strategy proposed in [4] divides the
code tree into several regions. Each region is reserved to
support one specific data rate. When a region runs out of
capacity, the codes from other regions are borrowed. The
code tree partitioning strategy, which is obtained by the
users’ request probabilities, has great impact on system
performance. But, it is difficult to find out, especially when
the call patterns change dynamically. Even if an optimal
partitioning can be found, the code tree may still become
fragmented because of the borrowing activities. The time
complexity is proportional to the size of the region being
searched. It is O(SF) in the worst case. In [22], a compact
index is defined for each code in the code tree. A code with a
smaller compact index is regarded as more suitable to be
assigned. This code assignment strategy is time-consuming
since all compact indices need to be recalculated before each
code assignment. In the worst case, the time complexity is
OðMlogMÞ, where M is the maximum SF. The basic idea of
this strategy is similar to our crowded-first strategy.
However, as will be shown in Section 3.1, our crowded-
first strategy has a lower computation complexity at the
expense of a little larger storage requirement.

A dynamic code reassignment algorithm is proposed in
[18] to determine the subtree that can be vacated with the
minimum cost, where the number of calls being relocated is
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used as the performance metric. The scheme does not
specifically address the code placement strategy when a
new call arrives. Also, when relocating existing calls, it does
not specify where to place those relocated codes. This
strategy will be used by our scheme as a guideline when
identifying which codes need to be relocated when
reassignment is conducted.

The works in [7] and [19] assume that a call can be
supported by more than one code in the OVSF code tree
and, thus, extends to a multi-OVSF-code environment. Only
code assignment strategies are considered. These two
strategies focus on determining the number of codes and
their data rates that should be assigned to a new call.
However, they fail to address the exact positions in the
OVSF code tree where these codes should be placed. In fact,
as will be shown later, the locations of codes do play an
important role in assignment, which significantly affects the
system performance.

3 CODE PLACEMENT AND REPLACEMENT

STRATEGIES

3.1 Placement Schemes

When a call requesting kR arrives, where k is a power of
two, we need to find a code to accommodate this call.
Assuming that no code reassignment will be conducted, we
propose three strategies below:

1. Random. If there is one or more than one code in the
code tree with a rate kR, randomly pick any one and
assign it to the call. Otherwise, the call is rejected.

2. Leftmost. If there is one or more than one code in the
code tree with a rate kR, pick the leftmost one in the
code tree and assign it to the call. Otherwise, the call
is rejected. The intuition is to always vacate a larger
capacity in the right-hand side of the code tree so as
to accommodate higher-rate calls in the future.

3. Crowded-first. If there is one or more than one code in
the code tree with a rate kR, pick the one whose
ancestor code has the least free capacity. More
specifically, suppose codes x and x0 are both of rate
kR. We will compare the free capacities in their
ancestors, say y and y0, respectively. The one with
less free capacity (i.e., more crowded) will be picked
to accommodate the new call. When there are ties,
we will go one level up by comparing y and y0’s
ancestors. This is repeated until the subtree with the
least free capacity is found. One special case is that y
may represent the same subtree as y0. If so, we will
follow the leftmost rule to pick the code on the left-
hand side.

For example, consider the code tree in Fig. 2a. Suppose a
new call arriving requesting a rate 2R. By the random
strategy, any of the codes C16;1, C16;5, C16;6, C16;7, C16;8, C16;15

may be picked to serve the new call. By the leftmost strategy,
C16;1 will be chosen. By the crowded-first strategy, we will
compare these codes’ ancestors. Among them, both C8;1 and
C8;8 will be fully occupied if C16;1 and C16;15 are chosen,
respectively. So, we further compare their ancestors,C4;1 and
C4;4, but again this is a tie. After going one level up, we will

find that C2;2 is more crowded than C2;1, so C16;15 will be
selected to serve the new call.

Still assuming a new call of rate 2R, two more examples
are in Figs. 2b and 2c. In Fig. 2b, the random and leftmost
strategies may make the code tree more fragmented, while
the crowded-first strategy will pick C16;13, which can best fit
the new call. In Fig. 2c, no place exists to best fit a 2R call.
However, the crowded-first strategy will still pick C16;13,
which can leave a largest free capacity, 8R, for future calls.

Theorem 1. Given any code request to a partially occupied code
tree, the crowded-first strategy will result in a code tree that
has the largest code among all the possible code trees after the
assignment.

Proof. If there is no sufficiently large free code, the theorem
holds trivially. Otherwise, let x be the largest free code
before the assignment. If there is another free code x0 of
the same size as x, one of x and x0 must remain free after
the assignment. So, the theorem holds, too. Otherwise, let
y be the second largest free code. Consider the code
request, say r. If r > y, either x or one of x’s descendants
will be assigned to r. The largest remaining code is either
y or one of x0s descendants. Thus, the theorem holds, too.
If r � y, either y or one of y’s descendants will serve as
candidates to accommodate r. When searching bottom-
up in the code tree, we will find that y’s ancestor is more
crowded than x. This ensures that x’s descendants will
not be assigned to r, which proves this theorem. tu

The computation time required for the random strategy
depends on the requested data rates. To find a free kR
code, it is sufficient to search the level with rate kR. For
example, if a request asks for a code with SF ¼ 4, four
searches are needed in the worst case since the number of
codes at each level equals the value of SF. Thus, the time
complexity is proportional to the SF of the request, i.e.,
O(SF). Each code needs to store whether it is free or not.
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The storage requirement is thus SFþ SF
2 þ � � � þ 1 ¼ OðSFÞ.

For the leftmost strategy, it is easy to see that the time and
storage complexity are also O(SF). For the crowded-first
strategy, we must compare the free capacities of candidate
codes’ ancestor(s). To facilitate the comparison, each
internal code should store the free capacity in its subtree
(this additional storage requirement is also O(SF)). To find
a free code with a specific SF, we have to search all
candidate free codes of spreading factor SF. For each
candidate, we may have to compare the free capacity of
each of its ancestor codes. When we go one level up, the
number of ancestors reduces to SF

2 and further reduces to
SF
4 if we go two levels up. It is easy to see that the
searching cost is SFþ SF

2 þ � � � þ 1 ¼ OðSFÞ. Besides the
searching cost, an update cost has to be incurred
whenever a code is allocated/released. When a code of
spreading factor SF is allocated/released, all its ancestors
have to update their remaining capacities. The cost is
OðlogSFÞ.

3.2 Replacement Schemes

When the code tree is used for a long time, it is sometimes
inevitable that the tree may become fragmented. In this
case, a new call requesting for a rate kR may be rejected
even if the total amount of free capacity in the code tree is
� kR. This may result in low utilization of the code tree.

To resolve this problem, code reassignment can be
conducted to squeeze a large-enough space for the new
call. Code reassignment incurs costs on the system. In [18], a
dynamic code assignment (DCA) algorithm is proposed
based on code pattern search to find a branch of rate kR in the
code tree which can be vacated with the minimum cost
(minimum-cost branch). However, where to place those
relocated codes is not addressed in [18]. Placement
strategies for those relocated codes may have an impact
on the system performance in the future, too.

In this paper, we look for a total solution. Our solution is,
in fact, built on top of the DCA algorithm proposed in [18].
In case a new call arrives requesting a rate kR, but no free
code of such a rate exists, the following steps are taken:

1. If the total amount of free capacity in the code tree is
� kR, apply the DCA algorithm in [18] to find the
minimum-cost branch with rate kR. Otherwise, the
call is rejected.

2. For the busy codes in the branch found above, we
relocate them one-by-one starting from those with
higher rates. For each busy code being relocated, we
replace it based on any of our earlier strategies
(random, leftmost, or crowded-first). Note that it is
possible that no free code exists to accommodate the
relocated call. If so, this will trigger another round of
the DCA algorithm and, thus, another round of
relocation. This is repeated recursively until all busy
codes are relocated. Such a process is guaranteed to
complete because there is sufficient free capacity in
the code tree. Also, note that, for each relocated call,
we should stick with the same placement strategy
consistently.

For example, in the code tree in Fig. 3, suppose a new call
arrives requesting a rate 8R. Code C4;1 is the minimum-cost

branch because it contains only two busy codes, C8;1 and
C32;7. When relocating C8;1, another reassignment will be
triggered. This time, C8;8 is selected as the minimum-cost
branch because it contains only one busy code C32;29. Based
on our crowded-first strategy, C32;29 will be replaced to
C32;12. Then, C8;1 can be replaced to C8;8. Last, C32;7 will be
replaced to C32;22. Now, C4;1 is vacated to accommodate the
new 8R-call.

4 PERFORMANCE ANALYSIS

In this section, we establish an analytical model to evaluate
the performance of an OVSF code tree to support calls. We
consider a code tree with a certain maximum SF. Calls may
arrive requesting transmission rates ranging in 1R, 2R, 4R,
and 8R. Calls requesting each transmission rate will be
modeled by distinct arrival and service rates. The goal is to
analyze the call blocking probability and bandwidth
utilization of the code tree when code reassignment is
supported. Note that, although the maximum transmission
rate is 8R, our analytic result can be easily extended to a
higher transmission rate. Also note that, when code
reassignment is supported, a call can always be accepted
as long as the total remaining capacity of the code tree
(either fragmented or nonfragmented) is at least as large as
the requested capacity. As a result, our result is a very
general one, which is independent of what code placement
strategy is used for (comparison of strategy-dependent
performances will be studied in the next section through
simulations). The analytic results will then be verified by
simulation experiments.

The problem will be modeled by a Markov chain. The
state of the code tree will be represented by the transmis-
sion rates of all calls currently being supported by the code
tree. These rates will be denoted by a sequence of numbers.
For example, when there are three calls with transmission
rates 8R, 2R, and 1R in the system, the state of the code tree
will be denoted by (821) and there are four calls with rates
4R, 4R, 1R, and 1R in the system, the state of the code tree
will be denoted by (4411). We comment that the order of
numbers in a state is insignificant in our representation. For
example, (4411) = (4141) = (1144). The reason is that, when
code reassignment is supported, these states always have
the same amount of remaining capacity in the code tree.
However, we regard (4411) and (4222) as different states
because calls with different transmission rates may have
different arrival and service rates.

For example, in Fig. 4., we list some of the states in a code
tree with a maximum SF of 64. The way that we group these
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states is by total capacities being occupied. For example,

when the capacity occupancy is 2, there are two states, (2)

and (11), and when the capacity occupancy is 6, there are six

states, (42), (411), (222), (2211), (21111), and (111111).
To obtain all possible states in the system, we define a

generation function fðxÞ as follows:

fðxÞ ¼ 1

1ÿ x�
1

1ÿ x2
� 1

1ÿ x4
� 1

1ÿ x8
: ð1Þ

The number of states which have a capacity occupancy of c

can be obtained by calculating the coefficient of xc in fðxÞ.
The calculation can be interpreted by the partition of an

integer problem [5] with parts 1, 2, 4, and 8. Note that,

interestingly, this coefficient is independent of the value of

the maximum SF since fðxÞ is not affected by it. The total

number of states of the system is the sum of all coefficients

of xc for c ¼ 0; 1; . . . ;max SF. In Table 1, we demonstrate

the number of states with a capacity occupancy of cR and

the total number of states for different sizes of code trees.

After generating all possible states, the next step is to

obtain the state transition diagram. For example, we

illustrate in Fig. 5 all possible transitions into and out of

state (211). Here, we assume that maximum SF = 8.

Parameters �i and �i represent call arrival rate and call

service rate, respectively, for calls requesting for transmis-

sion rate iR. Note that the call departure rate to another

state is proportional to the number of codes of the same

transmission rate in the source state. Also, note that the

dashed lines actually represent nonexisting transitions.
To obtain all transitions, we need to define some

notations. Note that, in this paper, we assume that all calls

arrive according to a Poisson process and depart according

to an exponential process.

. �: the maximum SF.

. �i: the arrival rate for calls requesting a transmission
rate iR.

. �i: the service rate for calls with a transmission rate iR.

. Ps: the steady-state probability for the code tree
remaining in state s.

. NiðsÞ: the number of calls with a transmission rate iR
in state s. (For example, N4ð411Þ ¼ 1, N1ð4111Þ ¼ 3.)

. Cs: the capacity occupancy in state s. (For example,
Cð411Þ ¼ 6 and Cð4411Þ ¼ 10.)

. s� i: the state after adding a new call of transmission
rate iR into state s. (For example, ð411Þ � 2 ¼ ð4211Þ.)

. s	 i: the state after subtracting an existing call of
transmission rate iR from state s. (For example,
ð4211Þ 	 2 ¼ ð411Þ.)

. F ðs; iÞ: the feasible function, where s is a state and
i ¼ 1; 2; 4, or 8 such that
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F ðs; iÞ ¼ 1 if Cs�i � �
0 otherwise:

�
(Intuitively, this denotes whether adding a call with

a transmission rate of iR into state s is legal or not. If

the new capacity occupancy exceeds the maximum

SF, this is illegal and is denoted as 0.)

From the flow equilibrium property, we can derive from

each state s the following equation (the left-hand side

contains the flow-out traffics, while the right-hand side the

flow-in traffics):

Ps�
X

i¼1;2;4;8

NiðsÞ � �ið Þ þ Ps �
X

i¼1;2;4;8

F ðs; iÞ � �ið Þ ¼X
i¼1;2;4;8

Ps�i � F ðs; iÞ �Niðs� iÞ � �ið ÞþX
i¼1;2;4;8;NiðsÞ>0

Ps	i � �ið Þ:

ð2Þ

Also, the summation of steady-state probabilities of all

states equals 1, X
8s
Ps ¼ 1: ð3Þ

By solving the above equations, we can obtain the steady-

state probability Ps of each state s.

4.1 Call Blocking Probability

Call blocking occurs when a call arrives requesting a

transmission rate iR, but adding such a call into the current

state will lead to an illegal state. This is dependent on the

maximum SF of the code tree. Given any integer i,

0 � i � �, let’s define the accumulated probability PaðiÞ to be

PaðiÞ ¼
X
8s:Cs¼i

Ps: ð4Þ

This represents the probability summation of all those states

which have a capacity occupancy of i in the system. For

example,

Pað6Þ ¼ Pð42Þ þ Pð411Þ þ Pð222Þ þ Pð2211Þ þ Pð21111Þ þ Pð111111Þ:

Let’s denote by PBð�Þ the call blocking probability of the

system, given the maximum SF of �. This probability can be

derived as

PBð�Þ ¼
�1 �Pað�Þþ�2 �

P�

i¼�ÿ1
PaðiÞþ�4 �

P�

i¼�ÿ3
PaðiÞþ�8 �

P�

i¼�ÿ7
PaðiÞ

�1þ�2þ�4þ�8
: ð5Þ

4.2 Bandwidth Utilization

The utilization of a code tree, denoted by U�, can be

obtained by summing utilizations of states with the same

capacity occupancy divided by the total capacity of the code

tree, i.e.,

U� ¼
P�

i¼1 PaðiÞ � i
�

: ð6Þ

4.3 Numerical Results

We have implemented the above formulations by Mathe-

matica 3.0 to derive the steady-state probabilities, call

blocking probability, and bandwidth utilization (the details

are in the Appendix). The implementation is on an IBM PC-

compatible computer. The results are shown in Table 2 and

Table 3 for � ¼ 16 (indicated by “theoretical”). Unfortu-

nately, limited by the computing and space factors, we were

not able to calculate the results for � > 16 due to the state-

explosion problem (recall Table 1, when � ¼ 32, there are

1,625 states with 1,625 flow-equilibrium equations). Solu-

tions to this problem may count on more advanced software

tools or high-performance computers or on further reducing

the number of states in our Markov chain (which can be led

to future research).
To verify the correctness of our analysis, we have also

developed a simulator to calculate the call blocking

probability and bandwidth utilization. Each value in the

simulation curve is obtained from an average of 100 simula-

tion runs, where each run contains 4,000 accepted calls. The

results are shown in Table 2 and Table 3. We see that our

numerical analysis fits very closely with the simulation

results. This is also true for other call patterns (e.g.,

8R : 4R : 2R : 1R ¼ 4 : 4 : 1 : 1) since we use individual

variable �i and individual variable �i for each code rate in

our analysis.

5 SIMULATION RESULTS

We have implemented a simulator to evaluate the perfor-

mance of the proposed strategies. Two kinds of max SF, 64

and 256, were tested. New calls arrived in a Poisson

distribution. Each call might request a rate of 8R, 4R, 2R, or

1R. Different combinations of these code rates were tested.

Call duration is exponentially distributed with a mean of

four time units. Six different policies are simulated: RN, LN,

CN, RR, LL, and CC, where the first letter indicates the code

placement strategy and the second letter indicates the code

replacement strategy (R = random, L = leftmost, and C =

crowded-first). N means that code replacement is not

implemented. Note that it makes no sense to combine

different strategies, such as RL and LC, in the placement

and replacement parts.
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Fig. 5. Transitions into and out of state (211) in a code tree with

maximum SF of 8.
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In the following, we make observations from three
aspects:

1. Impact of Code Placement. In this experiment, we
adopt different code placement strategies without
using code replacement. We observe two metrics:

a. the code blocking probability for a new call being
rejected because of no code available, but the
total amount of free capacity in the code tree is
sufficiently large (note that code blocking is
different from the call blocking defined in
Section 4) and

b. the utilization of the code tree.

The traffic pattern used here is 8R : 4R : 2R : 1R ¼
1 : 1 : 1 : 1 (calls have equal probability to request for
rates 8R, 4R, 2R, 1R).

Fig. 6a shows the code blocking probability at
different traffic loads when maximum SF = 256. We
can see that the crowded-first strategy performs the
best, which is followed by the leftmost, and then the
random strategy. At light load, the blocking prob-
ability is quite insensitive to the code placement
strategy. After the system is around 60 percent fully

loaded (at around load = 160), the code placement
strategy will have a significant impact on blocking
probability. For example, when the code tree is about
80 percent fully loaded (at around load = 200), the
blocking probabilities are 5.5 percent, 1.6 percent,
and 1.2 percent for RN, LN, and CN, respectively.
Fig. 6b shows the same simulation when maximum
SF = 64. The trend is similar, but code placement
strategy starts to have an impact when the system is
about 37 percent fully loaded. This indicates an
interesting phenomenon that code placement is
more important when SF is smaller. Here, we do
not consider RR, LL, or CC because no code blocking
will happen when code replacement strategies are
implemented.

Next, we compare the utilization of the code tree
obtained by different strategies. Figs. 7a and 7b show
the results when maximum SF = 256 and 64,
respectively. Note that, in order to know the
maximum possible utilization, we also draw the
utilization curve of CC as an upper bound (with code
replacement, no new call will be rejected as long as
the code tree has sufficient remaining capacity). Still,
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TABLE 2
Call Blocking Probability at Different Traffic Load when max SF = 16

(call arrival rate �1 ¼ �2 ¼ �4 ¼ �8 ¼ �, call service rate �1 ¼ �2 ¼ �4 ¼ �8 ¼ �)

TABLE 3
Code Tree Utilization at Different Traffic Load when max SF = 16

(call arrival rate �1 ¼ �2 ¼ �4 ¼ �8 ¼ �, call service rate �1;¼ �2 ¼ �4 ¼ �8 ¼ �Þ.
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CN has the highest utilization, followed by LN, and
then by RN, as the code tree is more heavily loaded.

2. Impact of Code Replacement: In this experiment, we
adopt code replacement to observe its effect. We
compare three strategies: RR, LL, and CC. The
performance metric is the number of reassignments
being taken. (Comparing code blocking probability
makes less sense here because we can always
conduct reassignment.)

Fig. 8a shows the result when SF = 256. CC still
outperforms LL, which is followed by RR. Code
replacement will start to have a significant impact on
performance after the code tree is around 50 percent
fully loaded (load = 120). For example, when the
code tree is about 80 percent fully loaded, the
number of reassigned codes are 365, 94, and 67 for
RN, LN, and CN, respectively. Fig. 8b shows the
same simulation when SF = 64. The trend is similar
and, again, code replacement will start to have an
impact at a lighter load when SF is smaller.

We also compare the number of calls that are
accepted because of code relocation and the average
number of relocations to support such calls. The
result is in Table 4. The crowded-first scheme, due to
its compact code assignment, has the least number of
calls that are supported due to code relocation. The
average numbers of replacements per call are
relatively small for all three schemes and the
crowded-first scheme still performs the best.

3. Impact of Call Pattern. In earlier experiments, we
assume that calls request for rates 8R, 4R, 2R, and R
with equal probabilities. Here, we test more

patterns: 8R : 4R : 2R : 1R ¼ 4 : 4 : 1 : 1, 4 : 1 : 1 : 4,
and 1 : 1 : 4 : 4. Note that these are relative values.
How calls arrive will depend on the given traffic
loads. For example, when traffic load ¼ 240, the
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Fig. 6. Blocking probability at different traffic loads: (a) SF = 256 and

(b) SF = 64.

Fig. 7. Code tree utilization at different traffic loads: (a) SF = 256 and

(b) SF = 64.

Fig. 8. Reassigned costs at different traffic loads: (a) SF = 256 and

(b) SF = 64.
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number of 8R calls for pattern 1:1:1:1 and that for
pattern 1:1:4:4 will be different. The effect on code
blocking probability and number of reassignments
are shown in Figs. 9 and 10, respectively. In Fig. 9,
we see more advantages (larger gaps) of the
crowded-first strategy over the other two strategies
when the patterns are 4:4:1:1 and 4:1:1:4. This is
reasonable because bad placement of smaller calls
(such as 1R calls) will make the code tree more
fragmented, thus blocking more larger calls. The
advantage of the crowded-first strategy is reduced
when the call pattern is 1:1:4:4 since there are fewer
larger codes. In fact, 1R calls are never rejected as
long as the code tree is not full. Similar results can be
found in Fig. 10.

6 CONCLUSIONS

Wireless bandwidth is a precious resource. Thus, its

resource management is an important issue. In this paper,

we have addressed the code placement and replacement
problems on WCDMA OVSF code trees. We have shown

that the code placement and replacement strategies do have

significant impacts on the utilization of code trees and, thus,

the call blocking probability. The main idea is to keep the

code tree less fragmented so as to accept more calls. A

simulation model has been proposed to evaluate the

utilization of a WCDMA OVSF code tree. Among the

strategies we propose, the crowded-first strategy looks most

promising. The result is expected to more efficiently utilize

the scarce wireless bandwidth in WCDMA systems.

APPENDIX

Finally, we remark how we implemented our formulations

by Mathematica. As pointed out in Section 4, the number of

states is extremely large even for a small �. Manually

deriving all state transitions and flow-equilibrium equa-

tions is almost infeasible and error-prone. To resolve this

problem, we write a program to generate all the system

states and the flow-equilibrium equations. These flow-

equilibrium equations are in a pure text format, which can

be fed into Mathematica to get the steady-state probabilities

for all system states. The format in Mathematica to solve

simultaneous equations is:

Solve½fequation1; equation2; . . .g; fvariable1; variable2; . . .g�;

where an equation is of the format left_hand_side = =

right_hand_side. For example, when � ¼ 16, the flow-

equilibrium equation for state (211) is
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TABLE 4
Number of Calls (N) that Are Accepted Because of Code

Relocation and Average Number of Relocations
per Such Call (AVG)

Fig. 9. The effect of different code patterns on blocking probability:

(a) SF = 256 and (b) SF = 64.

Fig. 10. The effect of different call patterns on reassignment cost: (a) SF

= 256 and (b) SF = 64.
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P 211� 2�þ P 211� �þ P 211� �þ P 211� �þ
P 211� �þ P 211� � ¼¼ P 8211� �þ P 4211� �þ
P 2211� 2�þ P 2111� 3�þ P 21� �þ P 11� �:

From the state probabilities, we then calculate the call

blocking probability and bandwidth utilization as derived

above.
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